Martec evaluated incremental hardware costs at the vehicle manufacturer level. In order to assure good connectivity with the modeling exercise for each technology, Martec was given: Written functional description from which a bill-of-materials was developed Reference technical specification from the industry Reference to an existing vehicle or architecture in production A particular supplier's implementation of the technology The defined hardware content was costed in 2003 US dollars for the years 2009 and beyond assuming: A highly competitive, high volume purchasing environment At least 3 automakers employing the hardware at = 500,000 units annually At least 3 competent suppliers available to each automaker Martec did not assume or attempt to calculate: Retail price equivalent Currently unknown advances in design and or manufacturing Martec's results are reported in a matrix for calculation of net hardware costs vs. baseline. A bill-of-materials description representing the functional application of each discrete technology is provided in the matrix. Costs to the automaker for the defined hardware are shown on a net basis Credits also are shown where a new technology would reduce baseline hardware content and cost All study vehicles were required to meet Federal Tier 2 Bin 5 criteria emissions standards. Baseline as well as proposed future technology packages Lean-burn aftertreatment costs are expressed on a net basis vs. forecast 2009 stoichiometric Bin 5 baseline Manufacturer-level costs not captured by Martec include: R&D, application engineering, calibration and controls development Warranty and possible recall costs associated with new technologies Capital and labor costs associated with vehicle level integration and assembly Cross-system impacts to vehicle level costs | | | 2009 | | Volu | | | | are C | lware Co
ost Delti
vs | a Per | | |-----------------------------------|--|------|------------------------|------|--------------------------|----|------------------------------|-------|-----------------------------|-------|--------------------------| | Technology
Engine Technologies | Technology Description - Hardware and Functionality | AVA | DOHC
FWD
er (SC) | 4VA | DOHC
M FWD
UB (LC) | 44 | L DOHC
A4 RWD
oma (ST) | A | OHV ZV
RWD
& C (MV) | A | OHV 2V
AWD
ma (LT) | | DOHC from OHV | Substitution of DDHC-4V gas engine for CHV-2V gas engine of equal cylinder court. Cetters increase for Vew engine includes. New carn drive, +3 camhalth2 valves per cylinder, cam bearing surfacele, edin salve seats and valve guides, richer camfoliowers. Assumes Alheats and Fe block for CHV and Alheats and Albock CDHC. | | | 7 | ** | | | * | 500 | | 600 | | External EGR Credit | External EGR can be deleted if not needed or
another means of exhaust dilution is available | 1 | (25) | 1 | (25) | \$ | (25) | 5 | (25) | 1 | (25 | | Variable Cam Phaser | Line DOHC engines -1 phaser on intake Ver DOHC engines -2 phasers (1 on each intake bank) Line or Ver OHV -1 phaser provides coupled functionality | 1 | 35 | 1 | 70 | | 70 | ı | 36 | 1 | 36 | | Duel | Line DOHC engines - 2 phasers
Vee DOHC engines - 4 phasers
Practical solution for OHV engines undefined | 5 | 70 | | 140 | | 140 | 5 | 140 | 1 | 140 | | Charles | Line DOHC engines -1 phaser linked to both
carnishats.
Vee DOHC engines - 2 phasers (1 linked to both
carnishats on each bank).
Line or Vee DHV - 1 phaser provides coupled
functionally. | | 50 | | 115 | | 115 | | 35 | | 36 | | | | | | | Hardware Co
are Cost Delta
V6 | | |---|---|---|---------------------------------------|---------------------------------------|--|------------------------------------| | Technology | Technology Description - Hardware and Functionality | 2.2L DOHC
4V At FWD
Cavaller (SC) | 3.0L DOHC
4V A4 FWD
Teurus 6.CI | 3.4L DOHC
4V A4 RWD
Tecoma (ST) | 3.3L OHV 2V
At RWD
Town & C (MV) | 63L CHV 2
A4 AWD
Sierra (LT) | | Variable Valve Lift (VVL) | Intake phasing costs must be added to all VVI,
and CVVI, concepts. | | | | | | | Drichete 2-telp VVL
(DVVL) - Electromagnetic
(EM) | value paid per cylinder. 4 actuations, drivers,
increases. Tables values only Bassian DOHC
valuetianns separate cam tobe and rober fragre-
ficial paid of the actual value of 40 per cylinder.
Cylinder head in 4 actual value of 40 per cylinder.
Cylinder head in 4 actual value of 40 per cylinder.
Cylinder head in 4 actual value of 40 per cylinder,
Cylinder head in 4 actual value of 40 per cylinder.
See a supplied of 40 per cylinder.
See Bassian position of 40 per cylinder of 40 per cylinder of 40 per cylinder of 40 per cylinder.
Value participated on 40 per cylinder of 4 | \$ 120 | | | | | | DVVL - EM | per cylinder. Cylinder head redesign required for
low cost switch pasting concept. 4 lost motion devices each operating 1 intake
valve pair per cylinder. 3 solenoids, drivers,
harness. Estale valves only. Baseline DOHD
valvetran is separate cam lobe and rother finger
follower will Ha. for each valve of IV per cylinder. | | \$ 180 | \$ 180 | | | | DVVL - Electrohydraulic
(E)-6 | Cylinder head redesign required for low cost valve
pairing concept | \$ 75 | | | | | | | | 2009+ High
L4 | Volume Var
∨6 | iable Hardw
vs | are Cost Delt | Per Vehicl | |-----------------------------|--|---|---------------------------------------|---------------------------------------|--|-------------------------------------| | Technology | Technology Description - Hardware and Functionality
intake chaining costs must be added to all VVI. | 2.2L DOHC
4V A4 FWD
Cavaller (SC) | 3.0L DOHC
4V A4 FWD
Taurus (LC) | 3.4L DOHC
4V A4 RWD
Tacoma (ST) | 3.3L OHV 2V
A4 RWD
Town & C (MV) | 6.3L OHV 2
A4 AWD
Sierra (LT) | | Variable Valve Lift (VVL) | and CVVL, concepts 6 lost motion devices each operating 1 intake valve pair per cylinder. 3 solerouts, dowers, harmess Intake valves only Basedine DCHC valvetain is separate care tobe and roller finger follower verification and to the control of the control pairman concept. As for each valve of 4V per cylinder. Cylinder head redesign required for low cost valve pairman concept. | | \$ 116 | s 116 | | | | DVVL - EH | 6 lost motion devices each operating 1 intake
valve per cylinder, 3 solenoids, drivers, harness,
Intake valves only. Baseline cost is 2V per cylinder
OHV using RHVL lifters. | | | | \$ 115 | | | DVVL - EH | 8 lost motion devices each operating 1 intake
valve per cylinder. 4 soleroids, drivers, harness.
Intake valves only. Baseline cost is 2V per cylinder
OHV using RHVL litters. | | | | | \$ 16 | | Continuously Variable Valve | Ratio Invage including roble element for each paid
of intake valves. I or cerel shaft positioned by I
electrohydraulic actuator per bank Forked finger
follower operations. I paid of intake valves per
cylinder. Hydraulic lash adjusters remain. Corbot
of intake valves only. DOFC express only.
Baselines DOFC valvetam is separate carn lobe
and roller finger follower wir FLA for each valve of
4V per cylinder. Cylinder head redesign required
for low ocity whey paiming concept. | s 160 | \$ 276 | s 275 | \$275+DOHC | \$300+00H6 | | | | | | | Hardware Co
are Cost Delta
V5 | | |---|---|---|---------------------------------------|--------|--|--------------------------------------| | Technology | Technology Description - Hardware and Functionality | 2.2L DOHC
4V A4 FWD
Cavaller (SC) | 3.0L DOHC
4V A4 FWD
Teurus (LC) | | 3.3L OHV 2V
A4 RWD
Town & C (MV) | 5.3L OHV 2V
A4 AWD
Sierra (LT) | | Cylinder Deactivation -
Electrohydraulic | | | | | | | | Cylinder Deactivation - EH | 6 lost motion devices each operating 1 valve pair
3 odenoids, briven, hames 5 leachstraing all 6.
E valves in each cylinder for 12 of the engine
cylinders Eschulde any necessary VPM
improvements. Beseline DCHC valveran is
separate cam toke and roller finger follower vol.
H.A. for each valve of 47 per cylinder. Cylinder
hadd re-design required for low cost valve pairing
concept.
6 lost motion devices each operating 1 valve. 3 | | \$ 115 | \$ 115 | | | | Cylinder Deactivation - EH | solencids, drivers, harness. Deactivating all I & E
valves in each cylinder for 1/2 of the engine
cylinders. Excludes any necessary NVH
improvements. Baseline cost is 2V per cylinder
CHV using RHVL litters. | | | | \$ 115 | | | Culinder Descrivation - EH | S lost motion devices each operating 1 valve 4 solencids, drivers, harmes Deachwafty all I & E valves in each cylinder for 102 of the eigene cylinders. Excludes any necessary NVH improvements. Blaseline cost is 2V per cylinder CHV using RHVs. Lifes: | | | | | \$ 150 | | | | 2009 | | Volur | | iable | | are C | lware Co
ost Delta
vs | | | |---|--|------|------|-------------|---------------|-------------|---------------|-------|-----------------------------|---|--------| | Technology | Technology Description - Hardware and Functionality | 2.2L | DOHC | 3.0L
4VA | DOHC
4 FWD | 3.4L
4VA | DOHC
4 RWD | 3.3L | CHV 2V
RWD
& C (MV) | A | OHV 25 | | DVVL/EH with Cylinder Description : EH Carriess Valve Actuation (CVA) | Inside pricing costs must be added to all VVI.
combinations Add that step (closed) to tratile valents on 1/2 the
Add that step (closed) to tratile valents on 1/2 the
prividers for death-of-magnetic higher cost (selented)
- 1 per death-of-plants Add 2-step on enhaust
valents for death on 1/2 the cyloriders, Add 2-step
selencials to get to 1 per non-deat cylorider.
Add 2-step
selencials to get to 1 per non-deat cylorider.
Add 2-step
selencials to get to 1 per non-deat cylorider.
Add 2-step
selencials to 1 per non-death cylorider.
Add 2-step
selection of cylorider death of the cylorider
death-of-plants and cylorider
death | _ | 330 | | 200 | | 200 | | 200 | | 264 | | Electromagnetic
Actuation | Electromagnetic camiless valve actuation.
Assume 4 valves per cylinder Includes control
electrorics. Expressed as net cost per engine. 1
actuator per valve pair Controller. Criedit existing
valvetian. 42V is a requirement. It these costs are
excluded. | 1 | 690 | | 780 | | 790 | | 1,100 | | 1,30 | | Electrohydraulic
Actuation | Electrohydraulic carniess valve actuation. Assume
4 valves per cylinder. 1 actuator per valve pair,
includes hydraulics and control electronics.
Expressed as net cost per engine. | | 575 | | 650 | | 650 | | 900 | | 1,10 | | | | 20094 | | | | iable | | | tware Co
lost Delta | | hici | |--|---|-------|------------------------|----|------------------------------|-------|--------------------------|---|---------------------------|----------------------------|------| | Technology | Technology Description - Hardware
and Functionality | 4V A | DOHC
FWD
er (SC) | 44 | L DOHC
A4 FWD
rus (LC) | 4VA | DOHC
4 RWD
ma (ST) | A | OHV 2V
RWD
& C (MV) | 5.3L OF
A4 A1
Sierra | WD. | | Variable Geometry
Turbocharging | VGT gasoline turbo, charge air cooler, piston
upgrade, piston cooling, steel cranischaft, cooling
system upicar, sturming, rings, pressure sensor &
bearing upgrade. Excludes any needed increase
in transmission strouge capacity or modifications to
afferhrustment system. | 1 | 400 | | 400 | | 400 | | 400 | 1 | 40 | | Electric Assist
Turbocharging | Water gate gasoline such with 12V EAT
hand-onality at 800-1500W companion. Includes
charge air cooler, gration and ring upgrade, piston
cooling, teles cranisation, cooling system upsize,
plantining, head gasilet upgrade, pressure sensor
8, bearing upgrade Excludes any needed
increase in transmission tongle capacity or
modifications to alterterament system. | • | 475 | \$ | 475 | 1 | 475 | 1 | 475 | | 47 | | Gasoline Engine Downsizing
Credits | These credits apply only when the baseline velocite glassitine engine is replaced by another glassitine engine of the appr discribed for each credit. For this study AVI, and RESCOLE modelediscated table glass engines at 65%, appressive hybrids at 65% and moderate hybrids at 24% so these credits can be applied to those vehicle packages. | | | | | | | | | | | | Downstang credit
Downstang credit
Downstang credit | L4 DOHC 4V remains L4 DOHC 4V
V6 DOHC 4V moves to L4 DOHC 4V
V6 DOHC 4V moves to L5 DOHC 4V
V6 DOHC 4V moves to L4 DOHC 4V
V6 DOHC 4V moves to L4 DOHC 4V
V6 DOHC 4V moves to L5 DOHC 4V | | 14 | \$ | (700)
(550) | 1 | (700) | | | | | | Downstaing credit
Downstaing credit | VS OHV 2V moves to L4 DOHC 4V
VS OHV 2V moves to L5 DOHC 4V
VS OHV 2V moves to L6 DOHC 4V | | | | | 5Ī. | 3300) | 1 | (200)
(50) | 1 | (300 | | | | 2009+1 | High | Volu | nufactu
me Var
V5 | iable | | | | | a Per \ | | |---|---|--------------|------|------|-------------------------|-------|--------------------------|----|------|-----|---------|---------------------| | Technology | Technology Description - Hardware and Functionality | 22LD
4VA4 | OWF | 44 | DOHC
M FWD | 4VA | DOHC
4 RWD
ma (ST) | A | A RW | D | A4 | HV 2V
WD
(LT) | | Supercharging | Advanced supercharger including charge air cooler, juston and ring upgrade, juston cooling, tissel cranishing, bipass and struction, head gaster upgrade. Pressure sensor 8, bearing upgrade. Excludes any needed increase in transmission torque capacity. | 1 | 435 | 1 | 435 | 1 | 435 | | | 435 | 1 | 435 | | Variable Charge Motion | Active intake port tuning utilizing hydraulically
actuated "bumps" in each port | 400 | 30 | | 50 | | 50 | | | 55 | 4 | - 40 | | Direct Injection (DIG) (I | Wall-guide DIG 90-100 bar pressures. Excludes | 1 | | | | | | | | | | | | Stoichlometric | all modifications to base engine | 1 | 135 | 1 | 185 | 1 | 185 | 1 | | 185 | 1 | 210 | | Direct Injection (DIG) - Lean
Burn Stratified Charge | Wall-guide DIG 90-100 bar pressures. Excludes
all modifications to base engine | 1 | 135 | | 105 | 1 | 195 | | | 105 | 1 | 210 | | Lean Burn DIG
Aftertreatment Cost Delta | AVL designed 3.0L V6 with 3.73 g/m engine-out
NOx System includes inactive exhaust cooler.
Scaled using baseline engine displacements | 1 | 385 | | 500 | | 570 | | | 560 | | 900 | | Gasoline HCCI (AVL CSI
System) | AVL CSI System Wall-guide DIG 90-100 bar, ion
sense or withalf cylender pressure sensing, utilize
phaser, DVVL-EH supplemental EH exhaust
valve operation for distinct management will high
pressure oil pump and plumbing. Stochrometric
affactnessmen. | | 400 | | 600 | | 600 | | na | | | | | | Hydraulic pump, acutators, sit design, can move | 66 | 777 | | 33% | | | | | | . II | | | Variable Compression Ratio | CR from 7-10. | \$ | 320 | 3 | 380 | \$ | 380 | \$ | | 380 | 1 | 440 | | | | 200 | Vehicle
9+ High
L4 | Volu | | iable | | | st Delt | | | |---|---|-----|--------------------------|------|---------------|-------|---------------|--------------------------|---------|---|--------------------------------| | Technology | Technology Description - Hardware and Functionality | 47 | A4 FWD | 44 | DOHC
M FWD | 4VA | DOHC
4 RWD | 3.3L 0
A4 R
Town 8 | DW | A | L OHV 2N
A AWD
erra (LT) | | Baseline high-speed Diesel
Engine Displacement | Downsized DOHC 4V turbo diesel engines
modeled by AVL to provide equivalent
performance to each baseline gas engine. | | 78L L4 | | 10L L4 | | LL4 | 2.311 | | | 85L L6 | | Baseline high-speed Diesel | DOHC 4V turbo diesel: Common rail, -1,800 bar,
Piezo-actuated injectors, VNT, cooled EGR
Includes downsizing credit. Excludes any needed
increase in transmission torque capacity. | 5 | 1,000 | 1 | 300 | | 300 | 1 | 800 | | 95 | | Baseline diesel
aftertreatment Cost Deita
over stoich. | AVL designed 2-leg system revised to single leg
per MECA. Scaled from 2.8L V6 with 0.32 g/ml
engine-out NOx. | 1 | 500 | 1 | 575 | | 600 | t | 600 | 1 | 1,00 | | | DOHC 4V turbo diesel. Common rail. ~1,000 bar,
Piezo aduated rijectors. VVIT, coded BCR.
Includies downstong credit. Excludes any needed
increase in transmission tongue capacity.
FEV-NEEL APER-DEC light outy advanced
international crystem (DEER #2,003). Scaled
from 1,9L engine containing 1 pre-cat (DDC =
LNIT functionalsh). I underfoor LNIT and CDPE
10.1 frunctionalsh). I underfoor LNIT and CDPE
10.1 frunctionalsh). I underfoor LNIT and CDPE
10.1 frunctionalsh. | 5 | 1,000 | 1 | 300 | | 300 | | 800 | ı | 96 | | Diesel Advanced Multi-Mode
Aftertreatment Cost Delta | MECA supplied PGM loadings expressed as a range. | 53 | 250-350 | \$3 | 00-450 | 129 | 0-400 | \$285 | 400 | ş | 500-725 | | Diesel Engine and
Aftertreatment downsizing
substitution for Aggressive
Hybrid | Per NESCCAF design scaling of hybrid whicles,
use L4 DOHC 4V turbo desail AMM for this large
truck vehicle class but only with the aggressive
hybrid drivetiain. Afterbeatment cost is included in
this cost. | | | | | | | | | | 90 | | | | | | Manufactu
Volume Var
V6 | | lardw | | st Delti | | hic | |---|--|-------------------------------------|----|---------------------------------------|--------------------------|-------|--------------------------|----------|----------------------------|-----| | Technology | Technology Description - Hardware and Functionality | 2.2L DOH
4V A4 FW
Cavaller (5 | 0 | 3.0L DOHC
4V A4 FWD
Teurus (LC) | 3.4L 0
4V A4
Tacom | RWD | 3.3L 0
A4 R
Town & | CWD | 5.3L OF
At Al
Sierra | WD | | Drivetrain Technologies
Transmission | Conventional step giver | | 00 | \$ 100 | • | 100 | | 100 | 1 | 100 | | Transmission | Lepelleber gear set design | | 50 | | | 75 | | 75 | | | | Continuously Variable
Transmission (CVT) | Bet CVT. NESCCAF assumptions: Assumes
competitive market for bet technology free of
licenses and E-protection. Assumes global
volume and capital infrastructure on par with step-
gear bansmissions. | 5 1 | 50 | \$ 175 | 5 | 175 | | 175 | na | | | Automated Manual
Transmission 6 speed | 6-speed, dual wet clutch, fully automated. Piece cost only -i.e., US manual transmission capacity does not exist vs. Europe | cieutral | | neutral | neu | frai | neu | trai | neut | rai | | | | Vehic
2009+ High
L4 | Manufactu
olume Vari
V6 | | | | | | | |---|---|--|-------------------------------|------|--------|-----|-------------------|----|--------------------------------| | Technology | Technology Description - Hardware and Functionality | 2.2L DOHC
4V A4 FWD
Cavaller (SC | 3.0L DOHC | 47 | A4 RWD | - | L OHV 2V
4 RWD | A | L OHV 2%
4 AWD
erra (LT) | | 14V beit starter-alternator (idle off) | 2kW machine. Includes invested/controller, cable
upgrade, bet tensioner upgrade. Credit
alternator. Starter motor required for cold start.
Maximum cylinder displacement – 45L for warm re-
start. Includes 14V Pb acid battery upgrade.
4kW machine. Includes test upgrade, sower | | na | 1 2. | na | 154 | na | | na | | 42 Volt BAS - Belt Drive w/lide
Off | electronics, DC-DC converter for split system.
Liquid cooled electronics. Credit alternator and
starter. Maintain starter motor for 5.3L cold crank.
Excludes battery upgrade. | \$ 450 |
450 | \$ | 450 | 5 | 450 | \$ | 50 | | 42 Volt ISG-will Launch, Regen,
ide Off | 10kW motor, flywheel integration, power
electronics, DC-DC converter split sytem, liquid
cooled, credit starter and alternator. Excludes
bettery upgrade. | \$ 800 | 800 | \$ | 800 | 8 | 900 | \$ | 80 | | 42V system lead acid battery for
BAS | 36V 20Ah advanced adsorbent glass mat (AGM)
lead acid battery72 Kwhir. Targeted primarily
for the BAS system above. | s 120 |
120 | 5 | 120 | 5 | 120 | s | 12 | | 42V system lead acid battery set
for ISG | 36V 55Ah advanced adsorbent glass mat (AGM)
lead acid battery set - 1.98 KWHr. Targeted
primarily for the ISG system above. | \$ 330 |
330 | 5 | 330 | 5 | 330 | 5 | 31 | | 42V system NIMH battery | Full battery pack including 36 cells, 43.2V, 14A-h,
605 KWHr capacity, 2117 kJ energy (Ref. SAFT
Vh10H2, air cooled (40C) 36XVH4/5SF) for BAS | | | | | | | | | | upgrade
42V system NiMH battery | or ISG
Full battery pack including 36 cells, 43.2V, 45.8 A-
h. 1.98 KWHz capacity for ISG | \$ 1,090 |
1.090 | | 1.090 | | 1.090 | | 1.09 | | | | 2009 | | Volu | | iable | | | ost Delt
vs | | | |---|--|------|------------------------|------|---------------|-------|---------------|---|---------------------------|---|---------------| | Technology | Technology Description - Hardware and Functionality | AVA | DOHC
FWD
er (SC) | 447 | DOHC
M FWD | 447 | DOHC
M RWD | A | CHV 2V
RWD
& C (MV) | A | OHV 2V
AWD | | Original Moderate / Motor
Assist Hybrid
Mechanizations | Based upon the Honda Insight architecture with design changes. Small car uses 50kin PM mogen, 144V 9 Nivite Mikht Deberg pack. All other vehicles use 50kin PM mogen, 249V 18 Novie 1 Nikht Deberg pack. All vehicles include costs for CVT transmission, power electronics of 1 inventer and costrols. Excludes cost of replacement battery pack. | 1 | 2,050 | 1 | 2,750 | 1 | 2,750 | 1 | 2,750 | | 2,750 | | Original Aggressive / Fully
relayated Hybrid
dechanizations | Based upon 104 Toyota Pitus architecture with
dways changes. At verticats use 30 km PM
generated states, 50 km PM motor and 264 1 a
generated states, 50 km PM motor and 264 1 a
continuously version as a contraction, power
electronics vid "Interest and 1 of city (vidiga-
convente for 500V output and controls. Cread
journe for bealeshed which statem and generator.
Excludes cost of any replacement battery
pack. | | 3,000 | 1 | 3,000 | | 3,000 | 1 | 3,000 | | 3,000 | | | | | | | Hardware Co
are Cost Delta
V6 | | |---|--|---|---------------------------------------|---------------------------------------|--|--------------------------------------| | Technology | Technology Description - Hardware
and Functionality | 2.2L DOHC
4V A4 FWD
Cavalier (SC) | 3.0L DOHC
4V A4 FWD
Taurus (LC) | 3.4L DOHC
4V A4 RWD
Tacoma (ST) | 3.3L OHV 2V
A4 RWD
Town & C (MV) | 5.3L OHV 2V
A4 AWD
Sierra (LT) | | Revised Moderate / Motor
Assist Hybrid Mechs | O4 Hisonda Chric Hybrid architecture scaled by
NESOCAF to 18 each which class New cort
recludes a connectional transmission, MMH
battery pack at 1440 control and power
electronics including 1 invented for 1444 system, 1
permanent magnet motor/prevator. Christ given
for baseline volicile periodics. Excludes cost of
replacement battery pack.
Battery pack 9 o At, mogen 15 Kiw, CVT | in states | | | | | | | transmission
Battery pack 12 0 Ah, mogen 20 Kw, CVT | \$ 1,650 | | | | | | | banimission Battery pack: 12.0 Ah, mogen 20 Nw, CVT transmission. This verticle may not meet the load canying and baving continuous gradeability performance of the baseline verticle for this class. | | \$ 2,100 | \$ 2,100 | \$ 2,100 | | | | Battery pack 15.0 Ah, mogen 25 kw, 6 speed automatic transmission. This vehicle may not meet the load carrying and towing continuous gradeability performance of the baseline vehicle for this class. | | | | | \$ 2.400 | | | | Vehicle Manufacturer Discrete Hardware Cost Delta
2009+ High Volume Variable Hardware Cost Delta Per Ve
L4 V6 V6 V6 V6 | | | | | | | | | |---|--|--|---------------------------------------|---------------------------------------|--|--------------------------------------|--|--|--|--| | Technology | Technology Description - Hardware
and Functionality | 2.2L DOHC
4V A4 FWD
Cavaller (SC) | 3.0L DOHC
4V A4 FWD
Taurus (LC) | 3.4L DOHC
4V A4 RWD
Tacoma (ST) | 3.3L OHV 2V
A4 RWD
Town & C (MV) | 5.3L OHV 2V
A4 AWD
Sierra (LT) | | | | | | Revised Aggressive I Fully
Integrated Hybrid Mechs | 04 Toyota Pirus Injend archiecture design scaled by IEEE/CVF In the sead which is late Set Cost. All Set Cost In the sead which is also late Cost. All Set Interest in the Set Interest Intere | s 2,500 | \$ 3,100 | | \$ 3,100 | | | | | | | | and towing continuous gradeability performance of
the baseline vehicle for this class.
Battery pack 10 AAII, drive motor 60Km, generator
60Km. This vehicle may not meet the load carrying
and towing continuous gradeability performance of
the baseline vehicle for this class. | | | \$ 3,100 | | \$ 4,00 | | | | | | Technology Description - Hardware | Technology | | Vehicle Manufacturer Discrete Hardware Cost Delta
2009+ High Volume Variable Hardware Cost Delta Per Vehicl
V6 V6 V6 | | | | | | | | | | | |--|---------------------------------|-------------------------------------|--|---------------|--------------|------------|--------------|---------------|------------|---------------|------------|---------------|--| | Chemical Count Residency Technologies Chemical Country Chemica | | | 2.2L | DOHC
4 FWD | 3.00
4V A | L DOHC | 3.41
4V / | DOHC
M RWD | 3.3L
A4 | OHV 2V
RWD | 6.3L
A4 | OHV 2V
AWD | | | Executive/ada power steering 1 KM electrical systems (DPS) required for large (EVPS) that can be represented for large (EVPS) that can be represented for large triple. | Other Load Reducing | and t directions, | | | | | | | | | | | | | Decision power desiring (IPS) case IPS | Electrohydraulic power steerin |) truck case | | | | | | | | | s | 60 | | | High Efficiency Generator 80% high efficiency Lundel machine \$ 40 \$ 40 \$ 40 \$ 40 \$ | | | \$ | 20 | \$ | 40 | \$ | 40 | \$ | 40 | \$ | 4 | | | | | 80% high efficiency Lundell machine | \$ | | | | | | | | \$ | 64
40 | | | | Weight Reduction | | | 2.50 | \$ | 2.50 | \$ | 2.50 | 5 | 2.50 | \$ | 2.50 | | | Vehicle manufacturer costs represent variable handware cost delta over baseline technologies. RED, capital investment and other costs associated with emplementing new betchologies are excluded. Costs are forced and other destinated high variance levels. See Methodology Section for Bill description. | implementing new technologies i | are excluded. | | | | il investm | ent and | d other co | sts ass | ociated wi | ħ | | |